Computer Arithmetic

Addition and Subtraction

Dr. Mohammed Abdulridha Hussain

Signed Magnitude

Subtract Magnitudes
Add
Operation Magnitudes When $A>B$ When $A<B \quad$ When $A=B$

$$
\begin{array}{lllll}
(+A)+(+B) & +(A+B) & & & \\
(+A)+(-B) & & +(A-B) & -(B-A) & +(A-B) \\
(-A)+(+B) & & -(A-B) & +(B-A) & +(A-B) \\
(-A)+(-B) & -(A+B) & & & \\
(+A)-(+B) & & +(A-B) & -(B-A) & +(A-B) \\
(+A)-(-B) & +(A+B) & & & \\
(-A)-(+B) & -(A+B) & & & \\
(-A)-(-B) & & -(A-B) & +(B-A) & +(A-B)
\end{array}
$$

Signed Magnitude

- Addition(Subtraction) algorithm:
- When the signs of A and B are identical . Add the two magnitudes and attach the sign of A to the result.
- When the signs of A and B are different, compare the magnitudes and subtract the smaller from the larger. Choose the sign of the result to be the same as A if $A>B$ or the complement of the sign of A if $A<B$.
- If the two magnitudes are equal, subtract B from A and make the sign of the result positive.

Hardware Implementation

- Let $A \& B$ two registers that hold the magnitudes of the numbers and As \& Bs be two flip-flop that hold the corresponding signs.
- Complementer = XOR
- Adder = Full Adder
- E = Carry; AVF = overflow register
- If $\mathrm{M}=0$; Transfer B \& Add
- If $\mathrm{M}=1 ; s=A+\bar{B}+1=A-B$

Hardware Implementation

With signed-2's Complement data: Hardware implementation

Hardware Algorithm

Computer Arithmetic

Multiplication Algorithms
Dr. Mohammed Abdulridh Hussain

Introduction

2310111 Multiplicand
19×10011 Multiplier
10111
$00000+$
00000
$437 \frac{10111}{110110101}$ Product

Introduction

- The sign of the product is determined from the signs of the multiplicand and multiplier. If they are alike, the sign of the product is positive. If they are unlike, the sign of the product is negative.

Hardware Implementation for SignedMagnitude Data

- First, Instead of providing registers to store and add simultaneously as many binary numbers as there are bits in the multiplier, it is convenient to provide an adder for summation of only two binary numbers and successively accumulate the partial products in a register.

Hardware Implementation for SignedMagnitude Data

- Second, instead of shifting the multiplicand to the left, the partial product is shifted to the right, which results in leaving the partial product and the multiplicand in the required relative positions.
- Third, when the corresponding bit of the multiplier is 0 , there is no need to add all zeros to the partial product since it will not alter its value.

Hardware Implementation for SignedMagnitude Data

Hardware Implementation for SignedMagnitude Data

- Initially, the multiplicand is in register B and the multiplier in Q. The sum of A and B forms a partial product which is transferred to the EA register. Both partial product and multiplier are shifted to the right.

Hardware Algorithm

- The signs are compared, both A and Q are set to correspond to the sign of the product since a double-length product will be stored in registers A and Q.
- Register A and E are cleared and the sequence counter SC is set to a number equal to the number of bits of the multiplier. Since an operand must be stored with its sign. One bit of the word will be occupied by the sign and the magnitude will consist of $\mathrm{n}-1$ bits.

Hardware Algorithm

- After the initialization, the low-order bit of the multiplier in Q_{n} is tested. If it is a 1 , the multiplicand in B is added to the present partial product in A. If it is a 0 , nothing is done. Register EAQ is then shifted once to the right to form the new partial product. The sequence counter is decremented by 1 and its new value checked.
- If it is not equal to zero, the process is repeated an a new partial product is formed. The process stops when $\mathrm{SC}=0$.

Example

Multiplicand $B=10111$	E	A	Q	SC
Multiplier in Q	0	00000	10011	101
$Q_{n}=1 ;$ add B		10111		
First partial product	0	10111		
Shift right EAQ	0	01011	11001	100
$Q_{n}=1 ;$ add B		10111		
Second partial product	1	00010		
Shift right EAQ	0	10001	01100	011
$Q_{n}=0$; shift right $E A Q$	0	01000	10110	010
$Q_{n}=0$; shift right EAQ	0	00100	01011	001
$Q_{n}=1 ;$ add B		10111		
Fifth partial product	0	11011		
Shift right EAQ	0	01101	10101	000
Final product in $A Q=0110110101$				

Computer Arithmetic

Booth Multiplication Algorithm

Dr. Mohammed Abdulridha Hussain

Introduction

- It operates on the fact that strings of 0's in the multiplier require no addition but just shifting, and a string of 1's in the multiplier from bit weight 2^{k} to weight 2^{m} can be treated as $2^{k+1}-$ 2^{m}.
- For example
- $001110(+14)$ has 2^{4} to $2^{1}(k=4, m=1)$.

Introduction

- $2^{4}-2^{1}=16-2=14$, therefore, the multiplication $\mathrm{M} \times 14$, where M is the multiplicand and 14 the multiplier, can be done as $\mathrm{M} \times 2^{4}-\mathrm{M} \times 2^{1}$. Thus the product can be obtained by shifting the binary multiplicand M four times to the left and subtracting M shifted left once.

Introduction

- Booth algorithm requires examination of the multiplier bits and shifting of the partial product. Prior to the shifting, the multiplicand may be added to the partial product, subtracted from the partial product, or left unchanged according to the following rules:

Introduction

- The multiplicand is subtracted from the partial product upon encountering the first least significant 1 in a string of 1's in the multiplier.
- The multiplicand is added to the partial product upon encountering the first 0 (provided that there was a previous 1) in a string of 0's in the multiplier.
- The partial product does not change when the multiplier bit is identical to the previous multiplier bit.

Hardware

Algorithm

- If the two bits are equal to 10 , it means that the first 1 in a string of 1's has been encountered. This is requires a subtraction of the multiplicand from the partial product in AC. If the two bits are equal to 01, it means that the first 0 in a string of 0 's has been encountered. This requires the addition of the multiplicand to the partial product in AC. When the two bits are equal, the partial product does not change.

Example (-9) X (-13) = 117

$Q_{n} Q_{n+1}$	$\begin{aligned} & B R=10111 \\ & \overline{B R}+1=01001 \end{aligned}$	$A C$	$Q R$	Q_{n+1}	SC
10	Initial	00000	10011	0	101
	Subtract $B R$	01001			
		01001			
	ashr	00100	11001	1	100
11	ashr	00010	01100	1	011
01	Add $B R$	10111			
		11001			
	ashr	11100	10110	0	010
00	ashr	11110	01011	0	001
	Subtract $B R$	01001			
		00111			
	ashr	00011	10101	1	000

Array Multiplier

4-bit by 3 bit array multiplier

Computer Arithmetic

Division Algorithms
Dr. Mohammed Abdulridha Hussain

Introduction

Divisor:
$B=10001$

11010 Quotient $=$ Q

$0111000000 \quad$ Dividend $=A$

01110
011100
-10001
-010110
--10001
--001010
---010100
---- 10001
----000110 Remainder $<B$; enter 0 in Q
-----00110 Final remainder

Divide operation

Divide magnitudes

$$
\bar{B}+1=01111
$$

```
Dividend:
shl EAQ
add }\overline{B}+
E=1
Set Q Q =1
sh1 EAQ
Add}\overline{B}+
E=1
Set }\mp@subsup{Q}{n}{}=
shl EAQ
Add}\overline{B}+
E=0; leave }\mp@subsup{Q}{n}{}=
Add B
```

Restore remainder
shl $E A Q$
Add $\bar{B}+1$
$E=1$
Set $Q_{n}=1$
shl $E A Q$
Add $\bar{B}+1$
$E=0$; leave $Q_{n}=0$
Add B
Restore remainder
Neglect E
Remainder in A :
Quotient in Q :

$\overbrace{}^{E}$	\underbrace{A}	Q	$S C$
	01110	00000	5
0	11100	00000	
	01111		
1	01011		
1	01011	00001	4
0	10110	00010	
	01111		
1	00101		
1	00101	00011	3
0	01010	00110	
	01111		
0	11001	00110	
	10001	00110	
1	01010		2
0	10100	01100	
	01111		
1	00011		
1	00011	01101	1
0	00110	11010	
	01111		
0	10101	11010	
	$\underline{10001}$		
1	00110	11010	0
	00110		
		11010	

Examples

- By using Addition \& Subtraction algorithms solves the following:
$(13+9),(-7+5),(5-2),(-7-5),(-2-3)$
(-4-(-6)) , (-5 + 4)
- Multiplication
(21×31)
- Booth multiplication
(15 x 13), (15×-13)
- Division
(15 / 3) , (163/11)

